Immobilization of the influenza A M2 transmembrane peptide in virus envelope-mimetic lipid membranes: a solid-state NMR investigation.
نویسندگان
چکیده
The dynamic and structural properties of membrane proteins are intimately affected by the lipid bilayer. One property of membrane proteins is uniaxial rotational diffusion, which depends on the membrane viscosity and thickness. This rotational diffusion is readily manifested in solid-state NMR spectra as characteristic line shapes and temperature-dependent line narrowing or broadening. We show here that this whole-body uniaxial diffusion is suppressed in lipid bilayers mimicking the composition of eukaryotic cell membranes, which are rich in cholesterol and sphingomyelin. We demonstrate this membrane-induced immobilization on the transmembrane peptide of the influenza A M2 (AM2-TM) proton channel protein. At physiological temperature, AM2-TM undergoes uniaxial diffusion faster than approximately 10(5) s(-1) in DLPC, DMPC, and POPC bilayers, but the motion is slowed by 2 orders of magnitude, to <10(3) s(-1), in a cholesterol-rich virus envelope-mimetic membrane ("viral membrane"). The immobilization is manifested as near rigid-limit (2)H quadrupolar couplings and (13)C-(1)H, (15)N-(1)H, and (13)C-(15)N dipolar couplings for all labeled residues. The immobilization suppresses intermediate time scale broadening of the NMR spectra, thus allowing high-sensitivity and high-resolution spectra to be measured at physiological temperature. The conformation of the protein in the viral membrane is more homogeneous than in model PC membranes, as evidenced by the narrow (15)N lines. The immobilization of the M2 helical bundle by the membrane composition change indicates the importance of studying membrane proteins in environments as native as possible. It also suggests that eukaryote-mimetic lipid membranes may greatly facilitate structure determination of membrane proteins by solid-state NMR.
منابع مشابه
NMR determination of protein partitioning into membrane domains with different curvatures and application to the influenza M2 peptide.
The M2 protein of the influenza A virus acts both as a drug-sensitive proton channel and mediates virus budding through membrane scission. The segment responsible for causing membrane curvature is an amphipathic helix in the cytoplasmic domain of the protein. Here, we use (31)P and (13)C solid-state NMR to examine M2-induced membrane curvature. M2(22-46), which includes only the transmembrane (...
متن کامل15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores.
This communication reports the first example of a high resolution solid-state 15N 2D PISEMA NMR spectrum of a transmembrane peptide aligned using hydrated cylindrical lipid bilayers formed inside nanoporous anodic aluminum oxide (AAO) substrates. The transmembrane domain SSDPLVVA(A-15N)SIIGILHLILWILDRL of M2 protein from influenza A virus was reconstituted in hydrated 1,2-dimyristoyl-sn-glycero...
متن کاملConformational changes of an ion channel detected through water-protein interactions using solid-state NMR spectroscopy.
The influenza A virus M2 protein is a pH-gated and amantadine-inhibited proton channel important for the virus life cycle. Proton conduction by M2 is known to involve water; however direct experimental evidence of M2-water interaction is scarce. Using (1)H spin diffusion solid-state NMR, we have now determined the water accessibility of the M2 transmembrane domain (M2-TM) in virus-envelope-mime...
متن کاملSolid-state 19F NMR spectroscopy reveals that Trp41 participates in the gating mechanism of the M2 proton channel of influenza A virus.
The integral membrane protein M2 of influenza A virus assembles as a tetrameric bundle to form a proton-conducting channel that is activated by low pH. The side chain of His37 in the transmembrane alpha-helix is known to play an important role in the pH activation of the proton channel. It has also been suggested that Trp41, which is located in an adjacent turn of the helix, forms part of the g...
متن کاملHelix tilt of the M2 transmembrane peptide from influenza A virus: an intrinsic property.
Solid-state NMR has been used to study the influence of lipid bilayer hydrophobic thickness on the tilt of a peptide (M2-TMP) representing the transmembrane portion of the M2 protein from influenza A. Using anisotropic (15)N chemical shifts as orientational constraints, single-site isotopically labeled M2-TMPs were studied in hydrated dioleoylphosphatidylcholine (DOPC) and dimyristoylphosphatid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 48 27 شماره
صفحات -
تاریخ انتشار 2009